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Abstract—Many dependable systems rely on the integrity of the position of their components. In such systems, two key problems are
secure localization and secure location verification of the components. Researchers proposed several solutions, which generally
require expensive infrastructures of several fixed stations (anchors) with trusted positions. In this paper, we explore the approach of
replacing all the fixed anchors with a single drone that flies through a sequence of waypoints. At each waypoint, the drone acts as an
anchor and securely determines the positions. This approach completely eliminates the need for many expensive anchors. The main
challenge becomes how to find a convenient path for the drone to do this for all the devices. The problem presents novel aspects,
which make existing path planning algorithms unsuitable. We propose LocalizerBee, VerifierBee, and Precise VerifierBee: three path
planning algorithms that allow a drone to respectively measure, verify, and verify with a guaranteed precision a set of positions in a
secure manner. They are able to securely localize all the positions in a generic deployment area, even in the presence of drone control
errors. Moreover, they produce short path lengths and they run in a reasonable processing time.
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1 INTRODUCTION

The dependability of many distributed systems relies on
knowing the position of the component devices. Some ex-
amples are sensor networks for environmental monitoring
(both for civilian or military purposes), geographic routing,
autonomous vehicle coordination, and so on. In all these
cases, if the system believes that a device is in a position
different from the real one, then it could infer wrong in-
formation and possibly take wrong decisions. Periodically
measuring the position of the devices is not enough to
guarantee security. Indeed, the majority of the positioning
methods are vulnerable to attacks in which an adversary
falsifies the position measurement [10].

Providing secure measurement of positions has shown
to be a non-trivial problem [3], [14], [20], [21], [22]. A
promising approach is verifiable multilateration [21], which
is a provably secure technique to determine a position by
measuring the distances from (at least) three anchors by
means of distance bounding protocols [2]. A distance bounding
protocol is a cryptographic protocol able to measure a secure
upper bound to the distance between two devices. Verifiable
multilateration is an extremely versatile technique, since it
can withstand both external adversaries and compromised
devices. However, it requires an expensive infrastructure
of many fixed anchors. The number of necessary anchors
grows roughly linearly with the size of the area in which the
devices are deployed [15], [21]. Another problem is that the
fixed anchors must be truly “fixed”, otherwise an adversary
could simply move one of them to jeopardize the security of
the system. This makes the infrastructure cost even higher,
since the anchors cannot be attached to the ground or to the
walls in a cheap and insecure manner.

In this paper, we explore the possibility of using the
emerging drone technology to solve these issues. Drones,

or Unmanned Aerial Vehicles (UAV), are aircraft with no
human pilot on board. They can enjoy different levels of
autonomy [11], ranging from being remotely piloted to
being completely autonomous in movements and decisions.
Our approach is to replace many fixed anchors with a
single drone which passes through a series of waypoints. At
each waypoint, it acts as an anchor by executing a distance
bounding protocol with one or more ground devices. We
thus completely eliminate the need for many expensive
fixed anchors.

Now, the problem becomes how to determine a con-
venient path for the drone. We cannot use existing path
planning algorithms, because they are not thought for ver-
ifiable multilateration, and a valid path for verifiable mul-
tilateration must respect additional geometric constraints.
In particular, the polygon formed by the waypoints must
contain the position of the device, otherwise such a position
cannot be considered trusted. Furthermore, other specific
issues must be addressed, like the imprecision on the control
of the drone movements.

Contribution The contribution of this paper is as follows.

o We explore the approach of using drones to securely
localize a set of devices by means of verifiable multi-
lateration.

We propose three path planning algorithms for se-
cure positioning and secure position verification:
LocalizerBee, VerifierBee, and PreciseVerifierBee.
LocalizerBee securely determines the position of
a set of devices. VerifierBee securely verifies the
position of a set of devices. In contrast with
LocalizerBee, VerifierBee assumes to know the un-

trusted position of the devices, which must be veri-



fied. PreciseVerifierBee is an extension of VerifierBee
which guarantees a bound on the positioning error,
at a cost of a longer path.

e We run a thorough experimental evaluation of the
proposed algorithms, and we compare them with
the literature. The results of our experiments show
that the localization-aimed paths proposed by the
literature cannot be used with verifiable multilater-
ation, because they are not able to localize all the
devices in a generic deployment area. On the other
hand, our proposed algorithms securely localize all
the devices even in the presence of drone control
errors. Moreover, they produce short path lengths
and they run in a reasonable processing time.

Organization The rest of the paper is organized as follows.
Section 2 compares with relevant related work. Section 3
introduces the basic concepts. Section 4 introduces the
assumptions and the requirements of drone-based verifi-
able multilateration. Sections 5, 6, and 7 describe the pro-
posed path planning algorithms, respectively LocalizerBee,
VerifierBee, and PreciseVerifierBee. Section 8 reports the
results of their experimental evaluation. The paper is con-
cluded in Section 9.

2 RELATED WORK

Secure positioning aims at measuring the position of a
device in the presence of an adversary that wants to falsify
such a measurement. Researchers proposed many meth-
ods [10], which offer different levels of security (provable
or only statistical), and defend against different kinds of
adversary (external or internal). Capkun and Hubaux [21]
proposed a provably secure positioning method called veri-
fiable multilateration. In this proposal, the system measures
the distances from a set of trusted anchors by means of
distance bounding protocols. The position is computed by
trilateration, and it is considered secure if it lies inside the
convex hull of the anchors. Perazzo et al. [15] improved
verifiable multilateration in such a way to require sensibly
less anchors to cover the same area. This is achieved by
leveraging the enlargement attack resistance of wireless
distance bounding protocols, analyzed by [6] and [19]. In
this paper, we replace the fixed anchors with a single mobile
drone, thus completely eliminating the need for an expen-
sive anchor infrastructure.

Perazzo et al. [14] studied the security of verifiable mul-
tilateration in the presence of non-ideal distance bounding
protocols, vulnerable to some extent to PHY-level attacks.
In this paper, we consider the distance bounding protocol
to be ideal, i.e., immune to attacks. We leave the analysis of
drone-based verifiable multilateration with non-ideal dis-
tance bounding as future work.

Capkun et al. [20] proposed a secure location verifica-
tion mechanism based on mobile stations (not necessarily
drones). In their system, the movements of the mobile
stations are random, and the security is based on the as-
sumption that the adversary cannot observe nor predict
such movements in any way. This assumption could be too
strong for some applications. Instead, our approach does
not require the unobservability of the drone movements.
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Moreover, a random path can take a very long time to cover
a given area, thus it could be unsuitable for a limited-battery
drone. On the other hand, by using verifiable multilateration
we can plan shorter, non-redundant and deterministic paths.

In our previously published conference paper [13], we
introduced the approach of drone-based verifiable multilat-
eration, and we proposed a first version of the VerifierBee
path planning algorithm. In this paper we extend such work
by proposing the LocalizerBee and the PreciseVerifierBee
path planning algorithms and analyzing their performances.
LocalizerBee is for secure localization, rather than secure
location verification, so it does not need prior information
about the positions of the ground devices. PreciseVerifierBee
is an extension of VerifierBee which guarantees a provable
bound on the positioning error, at a cost of a longer path.

A problem related to ours is drone-based (insecure)
localization of ground devices [4], [8], [12], [17], [18]. All
these works do not have security in mind, and their position
measurements cannot be considered trusted in a hostile
environment or in the presence of compromised devices.
One of the simplest approaches is the one given by Corke
et al. [4], in which a robot sweeps the entire area and
periodically broadcasts its GPS position. The devices collect
such positions and infer their own position by averaging
them. Such a method is not secure, since an adversary could
simply send fake position broadcasts, in such a way to
confuse the devices. Authenticating the position broadcasts
does not solve the issue, since an adversary could listen to a
legitimate broadcast and replay it on different positions. An-
other common method (see for example Sichitiu et al. [18]) is
to infer the distance between the device and the mobile an-
chor from the strength of the received messages, and hence
derive the position by trilateration. All the methods based
on the received signal strength are poorly secure, since an
adversary has an easy play on falsifying this information. In
this paper, we assure the trustworthiness of the measured
positions by using verifiable multilateration [21], which is a
provably secure method.

Koutsonikolas et al. [12], Huang et al. [8], and Rezazadeh
et al. [17] proposed and compared different trajectories
that a mobile anchor can follow in order to localize a set
of devices. They compared such trajectories in terms of
length, coverage, and localization precision. In this paper,
we test some of these trajectories, and we show that they are
unsuitable to be used with verifiable multilateration. This is
because a valid trajectory for verifiable multilateration must
respect additional geometric constraints. As a consequence,
the trajectories in [8], [12], [17] fails to localize securely all
the devices in a generic deployment area. On the other
hand, our path planning algorithms securely localize all
the devices, and at the same time they produce short path
lengths and they run in a reasonable processing time.

3 PRELIMINARIES

A distance bounding protocol [2] is a cryptographic protocol
able to measure a distance between two devices, in such
a way that an adversary cannot falsify the measurement
to be shorter than the real distance (reduction attack). A
distance bounding protocol determines a distance by pre-
cisely measuring the round-trip time between a challenge
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Fig. 1. Verifiable multilateration. The dashed triangle represents the
verifiable triangle.

and a response message. The messages convey numeric
quantities which are unpredictable by an external adversary,
so that she cannot reduce the round-trip time by guessing
and transmitting in advance the messages. Moreover, the
correct response is unpredictable by the responding device
itself before having received the challenge. In this way, a
compromised device cannot reduce the round-trip time by
responding in advance.

A basic example of such a distance bounding protocol is
the following:

Ml: B — A:commit(b, open)

M2: A— B:a

M3: B—A:b®a

M4: B — A : open,b,a, MAC(b, a),

where A is the party that measures the round-trip time
(for us, the drone), B is the untrusted party (for us, the
device), a and b are randomly generated numbers, k is
the secret shared by A and B, and MAC(-) is a function
computing a Message Authentication Code. The function
commit(b, open) implements a commitment scheme, by
which B commits to using a particular quantity b without
revealing it unless after having transmitted the correspond-
ing quantity open. M2 and M3 are the challenge and the
response messages, between which A measures the round-
trip time. Such a protocol has been adapted by Poturalski
et al. [16] for the IEEE 802.15.4a Ultra-Wideband (UWB)
PHY protocol [9], which allows us for a precision of few
centimeters in the distance estimation. From now on, we
will say “A measures B” as a shorthand for “A measures its
distance from B by means of a distance bounding protocol.”

Verifiable multilateration [21] is a provably secure tech-
nique to determine a position, which leverages distance
bounding. In verifiable multilateration, the position of a node
is determined by measuring the distances between the node
and at least three anchors whose positions are known (Fig. 1).
The distance measurements are performed by means of dis-
tance bounding protocols. The node’s position is computed
by trilateration, and is accepted only if it lies inside the
triangle formed by the anchors (verifiable triangle). Other-
wise, it is discarded as untrusted. Indeed, if an adversary
wants to falsify a position measurement inside the verifiable
triangle, then she must perform a reduction attack against
at least one distance bounding protocol, which is infeasible.
Note that the coverage of verifiable multilateration is only
the verifiable triangle, because the outside positions are
discarded. In the case in which more than three anchors are
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Fig. 2. Classic vs. drone-based verifiable multilateration.

involved in the localization process, the position is accepted
only if it lies in at least one of the verifiable triangles formed
by a triplet of anchors. Verifiable multilateration can defend
against different threat models: an external adversary or a
compromised node.

4 DRONE-BASED VERIFIABLE MULTILATERATION

Verifiable multilateration is able to securely measure the
position of a node, but it needs an expensive infrastructure
of fixed anchors. In case of a set of nodes sparsely deployed
on a large area and with a limited communication range, it
is necessary to deploy many anchors to reach them all. In
addition, the coverage is restricted to the verifiable triangle
only, so it is not enough that three anchors are within the
communication range: they also have to “surround” the
node in order to locate it securely. In the average case,
this increases the number of anchors necessary to cover a
given area, as shown in [6]. Finally, the anchors must be
truly “fixed”, otherwise an adversary could simply move
one of them to jeopardize the security of the system. This
makes the infrastructure cost even higher, since the anchors
cannot be attached to the ground or to the walls in a cheap
and insecure manner. The scalability challenges of verifiable
multilateration have been studied by Capkun and Hubaux
[21]. In particular, they proposed to place the anchors fol-
lowing a grid of regular triangles, in order to minimize the
anchors necessary to cover a given area. Although a regular
anchor placement can sensibly improve the scalability, the
number of anchors cannot scale better than linearly with the
size of the area to cover.

With the increased availability of drones [11] on the
market, it became affordable to replace many fixed anchors
with a single drone. The drone follows a path, touching
a sequence of waypoints. At each waypoint it acts as an
anchor (Fig. 2), and performs one or more distance bound-
ing protocols with the nodes on the ground. If the drone
measures a node on a waypoint, by extension we say that
such waypoint measures that node, or that such waypoint
is a measuring waypoint for that node.

The mechanism just described solves the scalability is-
sues of verifiable multilateration. The problem becomes now
how to find a convenient path for the drone in order to
securely measure a set of positions.

Note that the energy consumption of the UWB distance
bounding protocols is negligible compared to the consump-
tion of the drone motors. As an example, a DJI Phantom



4 Professional drone' mounts an 81.3 Wh battery, and it
can flight for a maximum time of 28 minutes. This means
that the motors consume about 174 W. On the other hand, a
DecaWave DWM1000 UWB transceiver? consumes far less:
about 211 mW in receive mode, 102 mW in transmit mode,
and 6.6 4W in sleep mode. Note also that the drone can
save the energy consumption of transmitting the measured
distances during the mission. It is sufficient that the drone
stores them locally, and then transmits them in bulk once
landed. Then, the position of the nodes can be determined
from the measured distances with a full-resource device.

The nodes are required to be static, or at least not to move
during the time period from their first distance bounding
execution to the last one. If a node moves, then its estimated
position will not be reliable. More precisely, if the node
is in three different positions at the times of the distance
bounding executions, then the estimated position will be
somewhere between these three positions. Such an esti-
mated position may not correspond to any of the positions
that the node assumed in time. The problem of drone-based
verifiable multilateration in the presence of mobile nodes
is interesting, but it falls outside the scope of the present
paper. In this paper we consider the nodes to be static, and
we focus on the path planning problem.

4.1 System Model

We suppose that the drone shares a different secret k£ with
each node, by which the distance bounding protocols are
executed. To distribute in a secure manner the secrets to the
nodes, a generic key deployment method (e.g., [7]) can be
used. This falls outside the scope of the present paper.

In our system, all the nodes are on the ground, while
the drone flies at a non-negligible altitude (h). We imagine
the waypoints to be projected onto the ground. The drone
“visits” a waypoint when its position is above the waypoint.
The verifiable triangle is considered to be projected onto the
ground too.

A path is a sequence of waypoints {W1, ..., Wy, }, each of
which is a point on the Cartesian plane. The drone visits the
waypoints in the order specified by the sequence. We require
that the path is closed, in the sense that the drone goes again
to the first waypoint at the end. The first waypoint (W) is
also called the home waypoint. It is a special waypoint, since
it is in a predefined position, and cannot be changed by the
path planning algorithm. The drone is supposed to take off
from the home waypoint, perform the mission, and land at
the home waypoint again.

Due to many factors, the movement of the drone is
not perfectly controllable, because for example the wind
strongly affects it. Moreover, the drone movement has to
respect some dynamic constraints, for example it cannot
change direction instantaneously. Due to this, the “true”
waypoints actually visited by the drone (actual waypoints,
W) could be different from the planned ones. We call the
distance between the planned and the actual waypoint the
waypoint control error. We assume that the waypoint control

1. https:/ /dl.djicdn.com/downloads/phantom_4/en/Phantom_4_
User_Manual_en_v1.2_20160805.pdf.

2. http:/ /www.decawave.com/sites /default/files /product-pdf/
dwm1000-product-brief.pdf.
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errors are bounded, and we call such a bound the waypoint
control precision (yw):

Wi = Wi <yw. 1)

The actual waypoints are unknown at the time of the path
planning. However, the drone can measure its position
during the mission, so the actual waypoints are measured
and can be used to estimate the position of the node.

The altitude is also not perfectly controllable, so the
“true” altitudes of the drone at each waypoint (actual alti-
tudes, h}) could be different from the planned one. We call
the absolute difference between the planned and the actual
altitude the altitude control error. We assume that the altitude
control errors are bounded, and we call such a bound the
altitude control precision (yp):

|h = hi| < Y. ()

The actual altitudes are unknown at the time of the path
planning. However, we assume that the drone measures
them during the mission, so they can be used to estimate
the position of the node.

When the drone performs a distance bounding protocol
with a node, it measures the line-of-sight distance, which
we call the slant distance. We suppose that the drone has a
limited communication range (Sy,qz). Nodes having a slant
distance beyond the communication range could be impos-
sible to reach with a distance bounding protocol. For the
aim of the localization, we are interested in the projection of
the slant distance onto the ground, which we call the ground
distance. The drone at the i-th waypoint computes a ground

distance d by:
d=1/s2 — N7, 3)

where s is the measured slant distance. Once the drone has
collected three or more ground distances from a node, it
can determine the position of such a node by trilateration.
Without measurement errors, the circumferences centered
on the measuring waypoints and with radii the computed
ground distances (measurement circumferences) will intersect
in the position of the node. In the practical case, the mea-
sured slant distance will always be affected by some error
(slant error), and thus the computed ground distance will be
affected by an error too (ground error). Moreover, the drone
position and altitude will be affected by measurement errors
as well (waypoint measurement error and altitude measurement
error). All these error sources make the measurement cir-
cumferences not to intersect in a point. We thus estimate the
position X (measured position) by solving the following least
squares problem:

minimize Z (||)~( - W - di)Q,
X i€R
where R are the indices of the measuring waypoints of the
node, and d; is the ground distance from the ¢-th waypoint.
The distance between the true and the measured position is
the positioning error.

We distinguish two types of mission: the localization
mission and the verification mission. In a localization mission,
we do not have any prior knowledge of the position of the
nodes. We only know that the nodes lie somewhere inside a



given deployment area D C R?. In this paper, we suppose the
deployment area to be rectangular, of sides D4 x Dp.

On the other hand, in a verification mission we assume
to have prior knowledge of the position of the nodes, from
which we compute the drone’s path. We call them prior
positions (N;). The prior positions are not trusted, therefore
we want to securely verify them by means of verifiable
multilateration. If the positions determined by verifiable
multilateration are not consistent with the prior ones, an
attack is detected. The prior positions could be imprecise,
and thus different from the actual positions (N}). We call
the distance between the prior and the actual position the
prior position error. We assume that the prior position errors
are bounded, and we call such a bound the prior position
precision (enN):

IN; = Ni|| < e 4)

Note that in a localization mission we need sometimes
to measure a node from more than three waypoints. Indeed,
we must measure it three times to get a first estimate of
its position, but this position could be outside the verifiable
triangle. In this case, we need to measure the node from
additional waypoints to include it in a verifiable triangle. To
include as many nodes as possible in the verifiable triangles
during a localization mission, we assume that the drone
measures all the nodes within its communication range at
each waypoint. On the other hand, in a verification mission
the drone measures each node from exactly three waypoints,
determined by the path planning algorithm.

4.2 General Requirements Of The Path

For both localization and verification missions, the path
must respect the following requirements.

o Communication range requirement. Each waypoint
must measure nodes within the communication
range. Farther nodes could be impossible to reach
with a distance bounding protocol.

e Verifiable triangle requirement. Each node has to
be measured from three or more distinct waypoints,
and at least a verifiable triangle formed by them must
contain the node. This is required for the localization
to be secure.

o Control error tolerance requirement. The above two
requirements have to be tolerant to control errors.
The drone should not miss to measure a node or fail
to include it in the verifiable triangle due to control
erTorS.

o Path length requirement. The path length should be
as short as possible. This is preferable for saving time
and drone’s battery life.

In the following, we will present three path planning
algorithms that fulfill such requirements: LocalizerBee,
VerifierBee, and PreciseVerifierBee. LocalizerBee produces
paths for localization missions, while VerifierBee
and  PreciseVerifierBee  for  verification  missions.
PreciseVerifierBee is an extension of VerifierBee which
offers a provable bound on the positioning error, at a cost
of a longer path.
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Fig. 3. Worst-case control error for verifiable triangle requirement in a
localization mission. The black crosses are the planned waypoints, while
the gray crosses are the actual ones. The gray dashed triangle is the
actual verifiable triangle. The gray dots are the positions of the nodes.

5 LOCALIZERBEE

This section is structured as follows. In Section 5.1 we
formalize the problem of determining a path for localization
missions which fulfills the requirements of Section 4.2. In
Section 5.2 we describe LocalizerBee, an algorithm which
solves such a problem.

5.1 Problem Formalization

In a localization mission, we do not have any prior knowl-
edge of the position of the nodes. We only know that the
nodes lie somewhere inside the deployment area. To respect
the verifiable triangle requirement, given a set of planned
waypoints forming a set of verifiable triangles, we have
to be sure that each node is contained in at least one of
them. We can reach this by imposing that the verifiable
triangles are contiguous, and that their union includes the
whole deployment area. In this way, we do not leave any
part of the deployment area uncovered. However, this is not
enough, since we have to be tolerant also to control errors.
In the presence of control errors, the verifiable triangle
actually drawn by the drone (actual verifiable triangle) could
be different from the planned one. As a consequence, the
node could lie outside the verifiable triangle again. To avoid
this, it is sufficient that the union of the planned verifiable
triangles is a superset of the deployment area plus four vy -
wide borders. We call such an area the tolerance area (Dyoyp).
We can prove this by considering the worst case, shown
in Fig. 3. The verifiable triangle has a side parallel to the
boundary of the deployment area, where the node N/ is. The
actual waypoints are shifted (with respect to the planned
ones) of vy the direction orthogonal to the boundary. The
actual verifiable triangle must contain the node even in this
case. By geometrical evidence, we obtain this if the union of
the planned verifiable triangles is a superset of the tolerance
area. Note that a node which is not at the extreme border
of the deployment area is not influential for the worst case.
For example the node N7 in Fig. 3 is always contained either
in the upper-right or in the lower-left verifiable triangle,
whatever the waypoint control error is.

We also have to fulfill the communication range require-
ment, so we have to impose that the node is reachable by
all the waypoints forming the verifiable triangle. To do this



even in the presence of control errors, it is sufficient that the
sides of the verifiable triangles are smaller than or equal to
a maximal triangle side (Ly,q.), defined as:

Lmaz £ \/57211111* - (h + ’Yh)Q - Z’VW (5)

Such a formula considers the worst-case control error,
shown in Fig. 4.
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Fig. 4. Worst-case control error for communication range requirement in
a localization mission.

The actual waypoint on the right is shifted of vy toward
right with respect to the planned waypoint. So the actual
verifiable triangle includes the position N/. At the same
time, the actual waypoint on the left is shifted of vy toward
left. The position N/ must be within the communication
range of the left waypoint also in this case.

5.2 Proposed Algorithm

We present LocalizerBee, an algorithm which solves the
problem formalized in Section 5.1. LocalizerBee uses a Trav-
eller Salesman Problem (TSP) solver algorithm as a building
block. The TSP solver is not required to be optimal, but
rather to find an approximate shortest path that visits a set
of points, and then returns to the first point (closed path). Of
course the performances of the TSP solver will affect those
of LocalizerBee both in terms of path length and processing
time.

LocalizerBee operates in two phases: (i) waypoint grid
construction; (ii) waypoint ordering. In the waypoint grid
construction phase, it builds a set of waypoints forming a
grid of isosceles triangles which covers the whole tolerance
area. The triangles have the same base T4 and the same
height T, and they are placed as shown in Fig. 5.

Fig. 5. Waypoint grid construction phase of LocalizerBee.

Note that we added two halved triangles on the left and
the right sides of each triangle row, in such a way that the
union of the verifiable triangles is a rectangle. The home
waypoint is finally added to such a set. We use a grid of
isosceles triangles and not, for example, regular triangles.
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Fig. 6. Example of LocalizerBee path. The black crosses are the way-
points, the red dashed line is the path.

Indeed, isosceles triangles are more flexible, because they
can be “resized” along both dimensions. This allows us to
cover the whole tolerance area as tightly as possible, without
wasting path length for covering external areas uselessly.
The base and the height of the triangles must be as long
as possible, without violating the maximal triangle side. To
this aim, given a base T4, the longest feasible height Tqx
is:

TBma;c = Lgmu- - (TA/Q)Q- (6)

LocalizerBee computes the base and the height of the trian-
gles as follows.

Ta = (Da+2vw)/ {Dfﬂ} )
Tp = (Dp + 29w/ {Dgﬂ] . ®)

In this way, we fill tightly the tolerance area with an integer
number of triangle rows and an integer number of triangles

Dp+2yw

— —‘ triangle

on each row. More precisely, there are [
rows, each containing 2 - [DAL:%W
plus 2 halved ones. -

In the waypoint ordering phase, LocalizerBee executes
the TSP solver to connect all the waypoints. Fig. 6 shows
an example of LocalizerBee path for a deployment area
D = 1000m x 1000m, with s,,,, = 300m (as claimed
by DecaWave for their IEEE 802.15.4a UWB transceivers
[5]), h = 150m, yww = 10m, and v, = 10m. We fixed
the home waypoint to be in the south-west corner of the
deployment area. As TSP solver, we employed the Chained
Lin-Kernighan heuristic implemented by the University of
Waterloo®, which provides for a state-of-the-art trade-off
between efficiency and optimality [1].

— 1 unhalved triangles

6 VERIFIERBEE

This section is structured as follows. In Section 6.1 we
formalize the problem of determining a path for verification
missions which fulfills the requirements of Section 4.2. In
Section 6.2 we describe VerifierBee, an algorithm which
solves such a problem.

3. http:/ /www.math.uwaterloo.ca/tsp/concorde/downloads/
downloads.htm



Fig. 7. Worst-case control error for verifiable triangle requirement in a
verification mission. The black dot is the prior position, while the gray
dot is the actual one.

6.1 Problem Formalization

In a verification mission, we have prior knowledge of the
position of the nodes. By leveraging this information, we can
design a path planning algorithm which produces shorter
paths than LocalizerBee. The prior positions are affected
by an error bounded by ey. To be sure that a verifiable
triangle contains the i-th node, the verifiable triangle must
include the whole circle centered in IN; and with radius ey.
However, this is not enough, since we have to be tolerant
also to control errors. To assure this, it is sufficient that the
verifiable triangle contains the whole circle centered in N;
and with radius €y 4 . We can prove this by considering
the worst case, shown in Fig. 7. The actual waypoints are
shifted (with respect to the planned ones) of vy on the di-
rection orthogonal to the side of the verifiable triangle. The
real node’s position is shifted (with respect to the prior one)
of ¢ ; on the opposite direction. The actual verifiable triangle
must contain the node even in this case. By geometrical
evidence, we obtain this if the planned verifiable triangle
contains the circle with center N; and radius ey + vy . We
call such a radius the tolerance radius (r;0;):

Ttol = EN + YW - )

We also have to fulfill the communication range require-
ment, so we have to impose that the node is reachable by all
the waypoints forming the verifiable triangle that contains
it. To do this even in the presence of control errors, it is
sufficient that the ground distances between the planned
waypoints and the prior position are less than or equal to a
maximal ground distance (d,qz), defined as:

dma:}c £ \/S%zax - (h + /yh)z —E&EN —TW- (10)

Such a formula considers the worst-case control error,
shown in Fig. 8.
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Fig. 8. Worst-case control error for communication range requirement in
a verification mission.
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Fig. 9. Example of initial path of VerifierBee with 30 nodes. The black
dots are the nodes.

with respect to the planned waypoint. At the same time, the
actual position N/ is shifted toward right with respect to the
planned position N;. The position N] must be within the
communication range of the left waypoint also in this case.

6.2 Proposed Algorithm

We present VerifierBee, an algorithm which solves the prob-
lem formalized in Section 6.1. VerifierBee uses a TSP solver
as a building block to find a first feasible solution. Then,
such a solution is iteratively improved, following a local
search heuristic. Of course the performances of the TSP
solver will affect those of VerifierBee both in terms of path
length and processing time.

VerifierBee operates in three phases: (i) initial path con-
struction; (ii) iterative improvement; (iii) waypoint reorder-
ing. In the initial path construction phase, it builds a set
of waypoints: the home waypoint plus three waypoints
for each node, placed at fixed positions to form a minimal
verifiable triangle. The minimal verifiable triangle is a reg-
ular triangle centered on NV; and with the vertices at 27
from the center. By geometry, this is the smallest distance
with which the regular verifiable triangle respects the 7
constraint. VerifierBee orients all the minimal verifiable
triangles with a vertex toward north, but the successive
iterative improvement phase may rotate and distort the
triangles in order to find shorter paths. After having built
the set of waypoints, we run the TSP solver on them to
find an approximate optimal path that touches them all.
The initial path is thus complete, and it is formed by 3n + 1
waypoints, where n is the number of nodes. Fig. 9 shows an
example of initial path for 30 nodes randomly distributed in
a deployment area D = 1000 m x 1000 m, with vy = 10m
and ey = 5m. Note that the drone passes very close to
each node. This makes the initial path quite sub-optimal in
length, since the drone does not use its full communication
range.

After having built the initial path, VerifierBee changes it
iteratively, following a local search heuristic. At each step,
VerifierBee analyzes the possible changes (e.g., moving a
waypoint in another position) and applies the most conve-
nient one, that is the one that decreases more the total path
length. The iterative improvement phase terminates when
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Fig. 11. Example of waypoint moving in VerifierBee.

no change is possible or convenient anymore, meaning that
we found a local minimum.

The changes are of two kinds: waypoint moving and
waypoint pruning. Waypoint moving changes the position
of a waypoint, while waypoint pruning removes a waypoint
and “substitutes” it with another existing one. Note that
the home waypoint cannot be moved nor pruned. Both
moving and pruning make use of the concept of freedom
space. The freedom space of a waypoint is the area where
the waypoint can be moved without violating any constraint
of the problem (all the other waypoints remaining fixed). It
can be computed geometrically, as illustrated in Fig. 10. The
curved border of the freedom space (BC) is the limit of the
dmaa constraint. The straight borders (AB and AC) are the
limits of the r;,; constraint.

Waypoint moving changes the position of a waypoint, in
such a way to shorten the global path. Fig. 11 shows an
example, in which W5 is moved so that the drone shortens
the path going from Wy, to Wi3. The best position where to
move a waypoint is always: (i) somewhere on the border
of the freedom space (like in Fig. 11), or (ii) coincident
with another waypoint in the interior of the freedom space.
In the latter case, we do not apply waypoint moving but
rather waypoint pruning (see below), that is we eliminate
the moved waypoint and substitute it with the coincident
one.

Waypoint pruning removes a waypoint (pruned waypoint)
and substitutes it with another existing one (substitute way-
point). The drone will not visit anymore the pruned way-
point. As a consequence, it will miss to execute a dis-
tance bounding protocol. The missing distance bounding
is executed when the drone passes through the substitute
waypoint. Waypoint pruning reduces the total number of
waypoints in the path. Fig. 12 shows an example of way-
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Fig. 12. Example of waypoint pruning in VerifierBee.

Algorithm 1: VerifierBee

Require: {N;}, W1, reo, dmax
1: Path < a set of waypoints, one on W71,
and the others on the minimal verifiable triangles.
2: Path < SolveTSP(Path) {initial path}
3: loop
4:  Path < Tterativelylmprove(Path, rior, dmaz)

5. if Path has not been improved then
6: exit loop
7. end if
8:  Path < SolveTSP(Path)
9:  if Path has not been improved then
10: exit loop
11:  end if
12: end loop

13: return Path

point pruning, in which Wiy is pruned and substituted
by Wao. When the drone visits Wy, it runs two distance
bounding protocols: one with N; and one with Ns. It is
possible to prune a waypoint only when its freedom space
contains the substitute waypoint. Note that, after pruning,
the substitute waypoint has to measure two nodes instead
of one. Consequently its freedom space will narrow, because
it has to take into account the constraints relative to both
nodes. The resulting freedom space is the intersection of
the freedom spaces relative to the single nodes. In some
cases, the freedom space of the waypoint to prune contains
more than one waypoint. All these waypoints are suitable
candidates to be the substitute waypoint. Which one to
choose is indifferent in terms of path length. VerifierBee
chooses the one which narrows less its freedom space, in
such a way to leave more “freedom” to the next steps of the
iterative improvement.

The iterative improvement phase may change the po-
sition and the number of the waypoints, but it does not
change their order, which remains the same of the initial
path. As a consequence, sometimes it is convenient to
reorder the waypoints by running the TSP solver again.
This is done in the waypoint reordering phase. The itera-
tive improvement and the waypoint reordering phases are
repeated, until the path length stops decreasing.

Algorithm 1 shows a pseudo-code description of
VerifierBee. The function SolveTSP(-) is our TSP solver.
The function takes a path, reorders the waypoints to form
an (approximate) optimal path, and then returns such a new
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Fig. 13. Example of VerifierBee path. The black dotted lines are the
distance bounding protocols.
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Fig. 14. Three possible bad geometry layouts.

path. The function IterativelyImprove(-) takes a path, per-
forms the iterative improvement, and returns the resulting
path.

Fig. 13 shows an example of VerifierBee path for the
same 30 nodes of Fig. 9, with s;,4, = 300m, h = 150m,
yw = 10m, v, = 10m, and ey = 5m. This path is
much shorter than the initial path of Fig. 9. Note that many
waypoints have been pruned and many others have been
moved in more convenient positions.

7 PRECISEVERIFIERBEE

This section is structured as follows. In Section 7.1 we
formalize the problem of determining a path for verification
missions which fulfills the requirements of Section 4.2, and
additionally offers a provable bound on the positioning
error. In Section 7.2 we describe PreciseVerifierBee, an al-
gorithm which solves such a problem.

7.1 Problem Formalization

VerifierBee builds a path able to securely verify a set of
nodes. However, it does not take into consideration the
positioning precision at all. In the process of finding an
approximate optimal path, VerifierBee could place the way-
points in such a way to form “bad” geometry layouts, for
example three waypoints collinear with the measured node.
This in turn can cause a big error in the position estimation.
Fig. 14 shows the three possible bad geometry layouts. If a
waypoint is in plumb-line above the measured node (Fig.
14a), then the computed ground distance will be affected by

Fig. 15. Angular aperture.

a big error. Even if the ground distances are precise, if the
waypoints are highly collinear with themselves (waypoint-
only collinearity, Fig. 14b) or with the node (waypoint-node
collinearity, Fig. 14c), then the computed position will be
affected by a big error. In VerifierBee, the presence of the 7
constraint avoids the possibility of waypoint-only collinear-
ity. On the other hand, the possibility of measuring from
above or of having node-waypoint collinearity are avoided
only if 74, is sufficiently large. The greater 7. is, the more
they are mitigated. However, the 4, constraint is thought
for fulfilling the verifiable triangle requirement, and should
not be used for other purposes. To avoid bad geometry
layouts, it is preferable to introduce specialized constraints.
We thus impose two additional constraints to the path: the
minimal ground distance and the minimal angular aperture. We
also show that, by imposing these new constraints, we can
guarantee a provable bound on the positioning error.

The minimal ground distance (d.in) forces the way-
points not to be in plumb-line above the measured node,
in such a way to avoid the bad geometry layout of Fig.
14a. More precisely, we impose that the ground distances of
the planned waypoints from the prior position are greater
than or equal to the minimal ground distance. The minimal
angular aperture (o) forces the waypoints not to be too
collinear with the prior position of the measured node, in
such a way to avoid the bad geometry layout of Fig. 14c. We
define the angular aperture (o) as the smallest angle among
those formed by the lines passing by the prior position
and the planned waypoints (Fig. 15). Note that the angular
aperture is small also in the case of only two of the three
waypoints collinear or almost collinear with the node, which
is also a bad geometry layout. The angular aperture ranges
from 0° to 60°. When o = 0° we have the worst layout, with
at least two waypoints perfectly collinear with the node.
When o = 60° we have the best layout, with the waypoints
forming equal angles with the node. We impose that the
angular aperture is greater than or equal to the minimal
angular aperture.

We show now that, if we assume zero prior position
error, zero error in the control and the measurement of the
drone position, and bounded slant error, then by imposing
a minimal ground distance and a minimal angular aperture
we can guarantee a provable bound on the positioning error.
We suppose that the slant error is bounded and we call such
a bound the slant precision (¢;). In the IEEE 802.15.4a UWB
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Fig. 16. Relationship between the slant and the ground error.

standard [9], the slant precision is usually of the order of
centimeters. For example, the transceivers commercialized
by DecaWave, which are compliant to such a standard,
have a precision of 10 centimeters [5]. We define the ground
precision (c4) and the positioning precision (€ ¢ ) as the bounds
on the ground error and the positioning error respectively.
We state the following:

Theorem 1. Supposing zero prior position error (e = Om),
zero control error (yww = Om, v, = O0m), and zero waypoint
and altitude measurement errors, if a node is measured with a
slant precision €5 by a drone at an altitude h on three waypoints
respecting a dpin > €5 and an ouy, > 0°, then the ground
precision will be:

1 + (h/dmin)27
and the positioning precision will be:

/ 2
€g =€ M (12)
sin(min/2)

Proof. Since we supposed that the waypoint measurement
error and the altitude measurement error are zero, then
the positioning error will depend only on the slant errors.
Also, since we supposed that the prior position error and
the control error are zero, then d,,;, and «,,;, will be
respected also by the actual waypoints and the actual node
position. In this case, if the ground distance is sufficiently
large compared to the slant precision (this is implied by
dmin >> €5), then a linear relationship will hold between
the slant and the ground error. Fig. 16 shows an evidence of
this. Such a relationship is given by:

(slant error)
round error) = ————— = (slanterror) - 4/ 1 h/d)? 13
(ground eror) = =" = (dantemron) - (/1 + (/)% (13)

where (3 is the angle of incidence of the slant distance to the
ground, and d is the ground distance (see Fig. 16). If d is
never smaller than d,,;,, then this becomes a relationship
between the slant and the ground precision:

eqa=¢s 1+ (h/dmin)?.

This proves the first statement of the theorem (Eq. 11). Now,
note that if all the ground distances are sufficiently large
compared to the ground precision, then the measurement
circumferences of the trilateration are linearizable at the
node position, without the problem solution changing sig-
nificantly. In this way, the measurement circumferences are

€4 = Es - (11)

(14)
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approximated with measurement lines, which are perpendic-
ular to the waypoint-node direction (Fig. 17).

+
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Fig. 17. Measurement lines forming a “star” shape. The dashed red
lines are the measurement lines. The black solid lines are the “extreme”
measurement lines. The red polygon is the star shape.

Moreover, if the waypoints are not perfectly collinear with
the node (this is implied by au,, > 0°), then the measured
position will lie inside the “star” shape shown in Fig. 17.
Such a shape is formed by three pairs of parallel “extreme”
measurement lines, each relative to one of the three way-
points. The extreme measurement lines correspond to the
three ground distances affected by the two extreme ground
errors: —¢q and +&4. The ground error will be somewhere
within [—&4, +¢4], thus each measurement line will be some-
where within the pair of extreme measurement lines. Note
that the measured position will always be inside the triangle
formed by the three measurement lines (see Fig. 17). This is
due to the properties of least squares optimization. Since
such a triangle is always fully contained inside the star
shape, then the measured position will be inside the star
shape too. The positioning error is thus bounded by the
distance between the center of the star (which is the actual
position of the node) and its farthest vertex (Fig. 18). Such a
distance depends on the ground precision and the angular
aperture:
1

(positioning error) < g4 - ————

. 15
sin(«/2) (15

If « is never smaller than «,,;,, then this becomes a rela-
tionship between the ground and the positioning precision:

1

T S 2) "

From (14) and (16) we prove the second statement of the
theorem (Eq . 12). O

With Theorem 1, we can give a guarantee on the max-
imum positioning error by fulfilling two simple geometric
constraints: d,i, and Qmin. Such a guarantee holds only if
the prior position error is zero, and the measurement and
the control errors on the drone position are zero, which is
not true in the practical case. However, in Section 8.1 we
will show that this approximation is reasonable, and the
guarantee of Theorem 1 is fulfilled even in the presence of
some errors on the prior positions and on the control and
the measurement of the drone position.
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Fig. 18. Maximum positioning error with a given ground precision and a
given angular aperture.

To guarantee a given ¢, we have to choose a couple
of values for d,,;, and o,,;,. However, this choice is not
univocal. We can choose a larger d,;, and a smaller a,r,
or vice versa. In general, with different d,,ip-tmin couples
a path planning algorithm will produce different paths.
The optimal couple is the one with which the algorithm
produces the shortest path. For PreciseVerifierBee, we will
simulatively determine such an optimal couple in Section
8.1.

7.2 Proposed Algorithm

We present PreciseVerifierBee, an algorithm which solves
the problem formalized in Section 7.1. PreciseVerifierBee is
an extension of VerifierBee, which respects the additional
dpmin and g, constraints. In this way, it guarantees a
bound on the positioning error, at a cost of a longer path.
The general structure of the VerifierBee algorithm (Algo-
rithm 1) remains the same, except that the initial path
construction and the iterative improvement phases have
to take into account the two additional constraints. In the
initial path construction phase, the vertices of the minimal
verifiable triangle must be at max{2r:, dmin} from the
center. By geometry, this is the smallest distance with which
the regular verifiable triangle respects both the 7;,; and the
dpmin constraints. Note that, being the minimal verifiable
triangle a reqular triangle, it enjoys the best possible angular
aperture (o = 60°), and thus the o, constraint is always
fulfilled. In the iterative improvement phase, the freedom
space of the waypoints has to be narrowed to take into
account the additional constraints. Fig. 19 shows an example
of freedom space in PreciseVerifierBee. The curved borders
of the freedom space are the limits of the d,,;, constraint
(AB) and d,,4; constraint (DE). The straight borders are
the limits of the r;,; constraint (BC and AF) and min
constraint (CD and EF).

Fig. 20 shows an example of PreciseVerifierBee path for
the same 30 nodes of Fig. 13, with s,,,4, = 300m, A = 150 m,
yw = 10m, v, = 10m, ey = 5m, dpn = 0.721h =
108.15m, and i, = 40°. The values of d,;n, and qmin
have been chosen to guarantee a positioning precision of
€ = 5.0g;, and at the same time to heuristically minimize
the path length (see Section 8.1). Note that this path is longer
than the path in Fig. 13 produced by VerifierBee, because
PreciseVerifierBee must fulfill additional constraints.

11

“home waypoint

Fig. 20. Example of PreciseVerifierBee path.

8 EXPERIMENTAL EVALUATION

We  implemented  LocalizerBee,  VerifierBee  and
PreciseVerifierBee with the Matlab programming language
and we tested their performance under different conditions.
This section is organized as follows. Section 8.1 gives
a heuristic parametrization of PreciseVerifierBee, and
validates simulatively its precision guarantee in the
presence of various error sources. Section 8.2 evaluates
LocalizerBee, VerifierBee, and PreciseVerifierBee in terms of
path length and processing time. Section 8.3 compares the
three algorithms with the literature in terms of coverage,
path length, and positioning error.

8.1 PreciseVerifierBee Parametrization And Validation

As anticipated in Section 7.1, in order to guarantee a given
€, we have to choose a couple of values for d,,, and
Qmin. However, this choice is not univocal. We can choose a
larger d,,i, and a smaller cu;,;,, or vice versa. In general,
with different dy,in-Qmin couples PreciseVerifierBee will
produce different paths. The optimal couple is the one with
which PreciseVerifierBee produces the shortest path, and it
depends on the prior positions and the other constraints 7,
and dyqz- To find this optimal couple, the user should run
PreciseVerifierBee several times with different couples, and
then pick the one producing the shortest path. This is quite
a burdensome operation. To avoid it, in Table 1 we give a
set of heuristically optimal dy,in-0tmin couples, one for each
value of positioning precision.



TABLE 1
Heuristically optimal d,,in-amin couples for PreciseVerifierBee

5)'( dmin Amin 5)2 dmzn Amin
3.0es | 1.043h 55° 5.0 0.721h 40°
3.5es | 0.918h 50° 7.0es 0.540h 35°
4.0es | 0.863h 45° 10.0es | 0.419h 30°
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Fig. 21. Average path length of PreciseVerifierBee wrt iy, With dif-
ferent values of the precision guarantee. 95%-confidence intervals are
displayed in error bars.

To obtain such heuristic values, we conducted a simula-
tion campaign as follows. We run PreciseVerifierBee on a set
of 20 prior positions randomly distributed on a deployment
area D = 1000 m x 1000 m. We fixed the home waypoint to
be in the south-west corner of the deployment area. As TSP
solver, we employed the Chained Lin-Kernighan heuristic
implemented by the University of Waterloo. We supposed
that the drone flies at an altitude of A = 150m, and
has a communication range of $y,4;, = 300m (as claimed
by DecaWave for their IEEE 802.15.4a UWB transceivers
[5]). We fixed a prior position precision of ey = 5m, a
waypoint control precision of vy = 10m, and an altitude
control precision of 7y, = 10 m. The constraint resulting from
these parameters are ri,; = 15m and dpe, = 238.77m.
We tested different positioning precisions, namely e; €
{3es, 3.5e5,4¢4, 55, Tes, 10e, }. For each positioning preci-
sion, we varied the o, constraint within {2°,4°,...,60°},
and we computed the corresponding d,,;, constraint by
inverting Equation 12:

\/(85(/55)2 -sin®(Qmin/2) — 1

in such a way to obtain that positioning precision. Finally,
we repeated the simulation for 100 different random sets of
prior positions.

Fig. 21 shows the average length of the planned path
with respect to a,in. Note that, depending on the position-
ing precision, we cannot choose a too small value for ayip,
because the corresponding d,,i, would be beyond dyq.,
causing the problem not to admit solutions. Note also that
the strongest positioning precision we impose, the longer
the produced paths will be, as expected. We can see that,
for each positioning precision, there is an “optimal zone”

: 17)
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for ayin, for which the average path length reaches the
minimum. To obtain the heuristic values of Table 1, we chose
Qunin as the approximate center of each optimal zone, and
the corresponding d,;, computed by inverting Equation 12
in such a way to obtain that positioning precision.

We repeated the same simulation campaign with differ-
ent numbers of nodes (namely: 10, 20, 50, 100), different 4,
values (namely: 10m, 12.5m, 15m, 17.5m, 20 m), and dif-
ferent d;q, values (namely: 105.00m, 177.09m, 238.77 m,
296.29m, 351.61 m). The position of the optimal zones does
not change sensibly with the varying of these parameters.
We conclude that the heuristic values of Table 1 have quite
a broad validity.

As we said in Section 7.1, the positioning precision guar-
antee of PreciseVerifierBee holds only if the prior position
error and the control error are zero, which is not true in the
practical case. To check if this approximation is reasonable,
we conducted a simulation campaign as follows. We run
PreciseVerifierBee on a set of 20 prior positions randomly
distributed on a deployment area D = 1000 m x 1000 m. We
fixed ey = 5mand 75, = 10m, and we tested different way-
point control precisions. We fixed a positioning precision
of ¢ = 5.0g,, and the corresponding heuristic values of
dpmin = 0.721h and oupin, = 40° given by Table 1. Then, we
simulated a verification mission which follows the produced
path. We assumed that the waypoint measurement errors
and the altitude measurement errors are bounded. We call
such bounds respectively the waypoint measurement precision
(ew) and the altitude measurement precision (gp). We fixed
them to ey = 10cm and &5, = 10 ¢cm, which should be fea-
sible with a good Differential GPS (DGPS) implementation
mounted on the drone. To simulate the errors on the prior
positions and on the control and the measurement of the
drone position, we proceeded in the following way. For each
node, we set its actual position at a random point within €y
from the prior one. For each waypoint, we set the actual
waypoint at a random point within ~y, from the planned
one, and the actual altitude at a random value within
[—Vh, +7n] from the planned one. Similarly, we set the
waypoint measured by the drone at a random point within
ew from the actual waypoint, and the altitude measured
by the drone at a random value within [—¢y, +¢5,] from the
actual one. We fixed a slant precision of €5, = 10 cm (claimed
by DecaWave for their IEEE 802.15.4a UWB transceivers
[5]). For each distance bounding, we simulated a random
slant error within [—¢g, +¢,]. We computed the measured
position and the corresponding positioning error as shown
in Section 4.1. Finally, we repeated the whole simulation for
250 different random sets of prior positions.

Fig. 22 shows the distribution of the mission’s worst
positioning error with respect to the waypoint control
precision. Note that the worst positioning error stays un-
der the positioning precision stated by Theorem 1 also
with non-zero prior position precision and non-zero con-
trol precision. We conclude that the precision guarantee of
PreciseVerifierBee holds even in the presence of a reasonable
amount of error in the prior positions and the measurement
and the control of the drone position.
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8.2 Optimality And Efficiency

To evaluate the optimality and the efficiency of the three
proposed path planning algorithms, we conducted a sim-
ulation campaign as follows. We run VerifierBee and
PreciseVerifierBee on a number of prior positions randomly
distributed on a deployment area D = 1000m x 1000 m.
For PreciseVerifierBee, we fixed a positioning precision of
€x = 5.0g,5, and the corresponding heuristic values of
dpmin = 0.721h and i, = 40° given by Table 1. We
repeated such a simulation for 100 different random sets
of prior positions.

Fig. 23 shows the average length of the planned paths
with respect to the number of nodes, compared with the
length of the path produced by LocalizerBee with the same
deployment area. Note that the length of the paths produced
by VerifierBee and PreciseVerifierBee grow logarithmically
with the number of nodes. VerifierBee produces always
the shortest paths, because it enjoys the prior knowledge
of the positions and at the same time it does not have to
fulfill any precision guarantee. As the number of nodes
grows, PreciseVerifierBee becomes significantly worse than
VerifierBee, and with 100 nodes it becomes worse even than
LocalizerBee. This means that guaranteeing a positioning
precision is quite an expensive requirement when the nodes
are many. With 100 nodes or more, it could be convenient
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Fig. 25. State-of-the-art paths aimed at localization.

to relax the precision guarantee (i.e., eg > 5.0e,). The
paths produced by the proposed algorithms are feasible
by commercial drones with a single battery charge. For
example, the Phantom 4 Professional drone is capable of
running about 13 Km in practical tests*. Our path planning
algorithms produce shorter paths (max 8.4 Km with Preci-
seVerifierBee and 100 nodes). This allows us to use cheaper
drones or to perform additional tasks in the same flight.

Fig. 24 shows the average processing time of VerifierBee
and PreciseVerifierBee, running on a 3.70GHz Intel Core
i3-4170 processor. The processing time of LocalizerBee is
negligible with respect to the other two algorithms. The
slowest algorithm (VerifierBee) takes roughly 40 seconds to
run with 100 nodes. This should be fully acceptable for an
off-line computation. Implementing the algorithms in the C
language (instead of the Matlab one) should improve the
processing time even more. VerifierBee takes longer to run
with respect to PreciseLocalizerBee. This is because both
algorithms follow a local search heuristic, but VerifierBee
has to respect less constraints, and thus it can do more
improvement steps before stopping on a local minimum.
On the other hand, PreciseVerifierBee finds a local minimum
earlier, and then stops.

8.3 Comparison With The State Of The Art

We compared the paths produced by the proposed algo-
rithms with other state-of-the-art paths aimed at localization
with a mobile anchor. In particular, we compared with the
SCAN path [12], the HILBERT path [12], the S-CURVES
path [8], and the Z-CURVE path [17]. For the SCAN, the
HILBERT, and the S-CURVES paths, we re-created the same
paths of the original authors (see Figs. 2a and 2c in [12],
and Fig. 2d in [8]), scaled for our deployment area size
(1000m x 1000 m instead of 480 m x 480 m). We did this by
fixing the resolution to R = (deployment area width)/8 =
125m and the waypoint interval to R/3 = 41.67m.
For the Z-CURVE path, we fixed the resolution to R =
(deployment area width)/8 = 125 m, as well. Fig. 25 shows
the resulting paths.

We compared with these paths in terms of cover-
age, path length, and positioning error. We conducted a
simulation campaign as follows. We run VerifierBee and
PreciseVerifierBee on a set of 20 prior positions randomly
distributed on a deployment area D = 1000m x 1000 m.
We also run LocalizeBee on the same deployment area. We
fixed the home waypoint to be in the south-west corner of

4. http:/ /myfirstdrone.com/phantom-4/
dji-phantom-4-real-world-range-test/



the deployment area. For VerifierBee and PreciseVeriferBee
we fixed a prior position precision of ey = 5m. For
PreciseVerifierBee, we fixed a positioning precision of € ¢ =
5.0e5. The examined state-of-the-art paths do not take into
consideration tolerance to control errors, nor drone position
measurement errors. Thus, to make a valid comparison, we
considered the control precision to be perfect (yyr = Om,
v, = 0m), and the measurement precision on the drone
position to be perfect (e = Om, €, = Om). Then, we
simulated the verification/localization missions. To include
as many nodes as possible in the verifiable triangles, for
LocalizerBee and the state-of-the-art paths we assume that
the drone measures all the nodes within its communication
range at each waypoint. On the other hand, for VerifierBee
and PreciseVerifierBee the drone measures each node from
exactly three waypoints, determined by the path planning
algorithm. We repeated such a simulation for 100 different
random sets of prior positions.

Fig. 26 shows the average percentage of covered nodes
with respect to the communication range. A node is consid-
ered covered if the requirements of Section 4.2 are fulfilled,
ie., if (i) it is within the communication range of at least
three waypoints, and (ii) its measured position lies within
a verifiable triangle formed by these waypoints. We can see
that the state-of-the-art paths do not reach 100% coverage,
and this makes them unsuitable for drone-based verifiable
multilateration.

Fig. 27 shows the average path length with respect
to the communication range. The examined state-of-the-
art paths do not depend on the communication range,
so their lengths do not vary. We can see that VerifierBee
and PreciseVerifierBee produce the shortest paths. This is
because they enjoy the prior knowledge of the positions.
LocalizerBee produces paths shorter than the state-of-the-art
paths for 5,4, > 300m. This confirms its good optimality.

Fig. 28 shows the average positioning error with respect
to the communication range. Note that all the paths reach
a good (sub-meter) average positioning error, but this is
ascribable not to the paths themselves, but rather to the
intrinsic precision of the underlying UWB technology. As
expected, VerifierBee is the least precise algorithm, because
it produces bad geometry layouts. Its precision is signifi-
cantly improved by PreciseVerifierBee, with a cost in terms
of path length. The proposed algorithms are not as precise
as the examined state-of-the-art paths, because they are
focused on localizing securely rather than precisely. The
superior precision of LocalizerBee and the state-of-the-art
paths is mainly because they measure each node from
more than three waypoints in the average case. This makes
the positioning more precise compared to VerifierBee and
PreciseVerifierBee, which measure each node from exactly
three waypoints.

9 CONCLUSIONS

In this paper, we explored the approach of using drones
to securely localize a set of devices by means of verifiable
multilateration. We proposed three path planning algo-
rithms for secure positioning and secure position verifica-
tion: LocalizerBee, VerifierBee, and PreciseVerifierBee. We
run a thorough experimental evaluation of the proposed

14

algorithms, and we compared them with the literature. The
results of our experiments showed that the localization-
aimed paths proposed by the literature cannot be used
with verifiable multilateration, because they are not able to
localize all the devices in a generic deployment area. On
the other hand, our proposed algorithms securely localize
all the devices even in the presence of drone control errors.
Moreover, they produce short path lengths and they run in
a reasonable processing time.
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